banner
Maison / Nouvelles / Puzzle
Nouvelles

Puzzle

Jul 28, 2023Jul 28, 2023

Par Max Planck Institute for Marine Microbiology5 juin 2023

Des scientifiques de l'Institut Max Planck de microbiologie marine ont découvert que Methanothermococcus thermolithotrophicus, un méthanogène que l'on croyait auparavant incapable de convertir le sulfate en sulfure en raison des coûts énergétiques élevés du processus et des sous-produits nocifs, peut en fait se développer sur le sulfate. Les chercheurs ont découvert cinq gènes codant pour des enzymes associées à la réduction des sulfates dans le génome du méthanogène, et en caractérisant ces enzymes, ils ont assemblé la première voie d'assimilation des sulfates à partir d'un méthanogène.

Comment un microbe méthanogène réassemble une voie métabolique pièce par pièce pour transformer le sulfate en un bloc de construction cellulaire.

Les chercheurs ont découvert que le méthanogène Methanothermococcus thermolithotrophicus peut convertir le sulfate en sulfure, défiant les hypothèses précédentes. En identifiant une voie unique d'assimilation des sulfates dans ce méthanogène, les découvertes ouvrent la possibilité d'une production de biogaz plus sûre et plus rentable grâce au génie génétique.

Le soufre est un élément fondamental de la vie et tous les organismes en ont besoin pour synthétiser les matériaux cellulaires. Les autotrophes, comme les plantes et les algues, acquièrent du soufre en convertissant le sulfate en sulfure, qui peut être incorporé dans la biomasse. Cependant, ce processus nécessite beaucoup d'énergie et produit des intermédiaires et des sous-produits nocifs qui doivent être immédiatement transformés. En conséquence, on croyait auparavant que les microbes connus sous le nom de méthanogènes, qui manquent généralement d'énergie, seraient incapables de convertir le sulfate en sulfure. Par conséquent, on a supposé que ces microbes, qui produisent la moitié du méthane mondial, dépendent d'autres formes de soufre, comme le sulfure.

This dogma was broken in 1986 with the discovery of the methanogen Methanothermococcus thermolithotrophicus, growing on sulfate as the only sulfur source. How is this possible, considering the energetic costs and toxic intermediates? Why is it the only methanogen that seems to be capable of growing on this sulfur speciesA species is a group of living organisms that share a set of common characteristics and are able to breed and produce fertile offspring. The concept of a species is important in biology as it is used to classify and organize the diversity of life. There are different ways to define a species, but the most widely accepted one is the biological species concept, which defines a species as a group of organisms that can interbreed and produce viable offspring in nature. This definition is widely used in evolutionary biology and ecology to identify and classify living organisms." data-gt-translate-attributes="[{"attribute":"data-cmtooltip", "format":"html"}]"> espèces? Cet organisme utilise-t-il des astuces chimiques ou une stratégie encore inconnue pour permettre l'assimilation des sulfates ? Marion Jespersen et Tristan Wagner de l'Institut Max Planck de microbiologie marine ont maintenant trouvé des réponses à ces questions et les ont publiées dans la revue Nature Microbiology.

La doctorante Marion Jespersen travaille sur un fermenteur dans lequel M. thermolithotrophicus pousse exclusivement sur sulfate comme source de soufre. Crédit : Tristan Wagner / Institut Max Planck de microbiologie marine

Le premier défi que les chercheurs ont relevé a été de faire pousser le microbe sur la nouvelle source de soufre. "Quand j'ai commencé mon doctorat, j'ai vraiment dû convaincre M. thermolithotrophicus de manger du sulfate au lieu du sulfure", explique Marion Jespersen. "Mais après avoir optimisé le milieu, Methanothermococcus est devenu un pro de la culture sur sulfate, avec des densités cellulaires comparables à celles de la culture sur sulfure."

"Les choses sont devenues vraiment excitantes lorsque nous avons mesuré la disparition du sulfate au fur et à mesure que l'organisme grandissait. C'est à ce moment-là que nous avons vraiment pu prouver que le méthanogène convertit ce substrat." Cela a permis aux chercheurs de cultiver en toute sécurité M. thermolithotrophicus dans des bioréacteurs à grande échelle, car ils ne dépendaient plus du sulfure d'hydrogène gazeux toxique et explosif pour leur croissance. "Cela nous a fourni suffisamment de biomasse pour étudier cet organisme fascinant", explique Jespersen. Maintenant, les chercheurs étaient prêts à creuser dans les détails des processus sous-jacents.

Pour comprendre les mécanismes moléculaires de l'assimilation des sulfates, les scientifiques ont analysé le génome de M. thermolithotrophicus. Ils ont trouvé cinq gènes qui avaient le potentiel de coder des enzymes associées à la réduction des sulfates. "Nous avons réussi à caractériser chacune de ces enzymes et avons donc exploré la voie complète. Un véritable tour de force quand on pense à sa complexité", déclare Tristan Wagner, responsable du groupe de recherche Max Planck sur le métabolisme microbien.

La cascade de réaction chimique partant du sulfate (SO42-) vers le sulfure (H2S). Crédit : Marion Jespersen / Institut Max Planck de microbiologie marine

En caractérisant les enzymes une par une, les scientifiques ont assemblé la première voie d'assimilation des sulfates à partir d'un méthanogène. Alors que les deux premières enzymes de la voie sont bien connues et présentes dans de nombreux microbes et plantes, les enzymes suivantes étaient d'un nouveau type. "Nous avons été stupéfaits de voir qu'il semble que M. thermolithotrophicus ait détourné une enzyme d'un organisme sulfato-réducteur dissimilateur et l'ait légèrement modifiée pour répondre à ses propres besoins", déclare Jespersen. Alors que certains microbes assimilent le sulfate en tant que bloc de construction cellulaire, d'autres l'utilisent pour obtenir de l'énergie dans un processus de dissimilation - comme le font les humains lorsqu'ils respirent de l'oxygène. Les microbes qui effectuent une réduction dissimilatoire des sulfates utilisent un ensemble différent d'enzymes pour le faire. Le méthanogène étudié ici a converti l'une de ces enzymes dissimilatrices en une enzyme assimilatrice. "Une stratégie simple mais très efficace et très probablement la raison pour laquelle ce méthanogène est capable de se développer sur du sulfate. Jusqu'à présent, cette enzyme particulière n'a été trouvée que chez M. thermolithotrophicus et aucun autre méthanogène", explique Jespersen.

Cependant, M. thermolithotrophicus doit également faire face à deux poisons générés lors de l'assimilation du sulfate. C'est à cela que servent les deux dernières enzymes de la voie : la première, encore une fois semblable à une enzyme dissimilatrice, génère du sulfure à partir du sulfite. Le second est un nouveau type de phosphatase avec une efficacité robuste pour hydrolyser l'autre poison, bientôt connu sous le nom de PAP.

"Il semble que M. thermolithotrophicus ait collecté des informations génétiques de son environnement microbien qui lui ont permis de se développer sur du sulfate. En mélangeant et en associant des enzymes assimilatrices et dissimilatrices, il a créé sa propre machinerie fonctionnelle de réduction des sulfates", explique Wagner.

Les méthanogènes hydrogénotrophes, comme M. thermolithotrophicus, ont la capacité étonnante de convertir le dihydrogène (H2, par exemple produit artificiellement à partir d'énergies renouvelables) et le dioxyde de carbone (CO2) en méthane (CH4). En d'autres termes, ils peuvent convertir le gaz à effet de serre CO2 en biocarburant CH4, qui peut être utilisé, par exemple, pour chauffer nos maisons. Pour ce faire, les méthanogènes sont cultivés dans de grands bioréacteurs. Un goulot d'étranglement actuel dans la culture des méthanogènes est leur besoin de sulfure d'hydrogène gazeux hautement dangereux et explosif comme source de soufre. Avec la découverte de la voie d'assimilation des sulfates chez M. thermolithotrophicus, il est possible de modifier génétiquement des méthanogènes déjà utilisés en biotechnologie pour utiliser cette voie à la place, ce qui conduit à une production de biogaz plus sûre et plus rentable.

"Une question brûlante non résolue est de savoir pourquoi M. thermolithotrophicus assimilerait le sulfate dans la nature. Pour cela, nous devrons aller sur le terrain et voir si les enzymes nécessaires à cette voie s'expriment également dans l'environnement naturel du microbe", conclut Wagner.

Référence : "Assimilatory sulfate-reduction in the marine methanogen Methanothermococcus thermolithotrophicus" 5 juin 2023, Nature Microbiology.DOI : 10.1038/s41564-023-01398-8

Comment un microbe méthanogène réassemble une voie métabolique pièce par pièce pour transformer le sulfate en un bloc de construction cellulaire.